Abstract

Water management is a critical issue in the development of proton exchange membrane (PEM) fuel cells with robust operation. Liquid water can accumulate and flood the gas delivery microchannels and the porous electrodes within PEM fuel cells and deteriorate performance. Since the liquid distribution fluctuates in time for two-phase flow, the rate of oxygen transport to the cathode catalyst layer also fluctuates, resulting in unstable power density and efficiency. This paper reports experimental data on the mean voltage loss and the voltage fluctuations during constant current operation as a function of both the number of parallel microchannels and the air flow rate stoichiometric ratio. We define channel plurality as a flow field design parameter to describe the number of channels per unit of active area. The voltage loss was found to scale proportionally to channel plurality divided by the air stoichiometric ratio. The amplitude of the voltage fluctuations was found to be linearly proportional to channel plurality and inversely proportional to the air stoichiometric ratio squared. By analyzing pressure drop data and power spectra, we conclude that the voltage fluctuations are well-correlated with two-phase flow instabilities in the cathode's parallel microchannels. Finally, a scaling analysis is presented for generalizing the results for fuel cells having different active area and channel cross-section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.