Abstract
We present a complete computational study devoted to the deposition of a magnetic binuclear complex on a metallic surface, aimed to obtain insight into the interaction of magnetically coupled complexes with their supporting substrates, as well as their response to external electrical stimuli applied through a surface-molecule-STM molecular junction-like architecture. Our results not only show that the deposition is favorable in two of the four studied orientations, but also, that the magnetic coupling is only slightly perturbed once the complex is adsorbed. We observe that the effects of the applied bias voltage on the magnetic coupling strongly depend on the molecule orientation with respect to the surface and the voltage polarity. Further analysis shows that this behavior is attributable to the stabilization/destabilization of the d-type singly occupied orbitals of the iron centers, reinforced by the strong local electric fields and induced charge densities only present in certain orientations of the deposited molecule and applied voltage polarity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.