Abstract

Devices made from Cu(In,Ga)Se2 (CIGS) solar cell material have been evaluated with high-speed capacitance–voltage profiling after stepwise voltage changes. The changes primarily affect near-interface charge at deep acceptors within the CIGS absorber layer and generate temperature-dependent capacitance changes observed in deep-level transient spectroscopy measurements. SCAPS device modeling indicates that the deep acceptor concentration is up to the two orders of magnitude higher than the shallow doping level. High deep acceptor concentrations are found in all materials studied here. The large deep defect levels are high enough to limit minority carrier lifetime and cell efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.