Abstract

To provide an overview of the role of voltage-gated sodium channels in pathophysiology of acquired and inherited pain states, and of recent developments that validate these channels as therapeutic targets for treating chronic pain. Neuropathic and inflammatory pain conditions are major medical needs worldwide with only partial or low efficacy treatment options currently available. An important role of voltage-gated sodium channels in many different pain states has been established in animal models and, empirically, in humans, where sodium channel blockers partially ameliorate pain. Animal studies have causally linked changes in sodium channel expression and modulation that alter channel gating properties or current density in nociceptor neurons to different pain states. Biophysical and pharmacological studies have identified the sodium channel isoforms Na(v)1.3, Na(v)1.7, Na(v)1.8, and Na(v)1.9 as particularly important in the pathophysiology of different pain syndromes. Recently, gain-of-function mutations in SCN9A, the gene which encodes Na(v)1.7, have been linked to two human-inherited pain syndromes, inherited erythromelalgia and paroxysmal extreme pain disorder, while loss-of-function mutations in SCN9A have been linked to complete insensitivity to pain. Studies on firing properties of sensory neurons of dorsal root ganglia demonstrate that the effects of gain-of-function mutations in Na(v)1.7 on the excitability of these neurons depend on the presence of Na(v)1.8, which suggests a similar physiological interaction of these two channels in humans carrying the Na(v)1.7 pain mutation. These studies suggest that isoform-specific blockers of these channels or targeting of their modulators may provide novel approaches to treatment of pain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.