Abstract

The connection of low power renewable energy sources, such as fuel cells, to the distribution generation system requires power electronics structures with high voltage gain, high capability to power processing and consequently, high levels of current flowing through the dc/dc converter. In this context, this study analyses how the parasitic resistances of the passive components and the load power demand affect the dc/dc converter voltage gain. Taking into account the mathematical model, the boundaries of operation of the Interleaved Boost with Voltage Multiplier converter is determined through a set of equations and by means of a graphical analysis. The theoretical analysis, simulations and experimental results are used to validate the proposed approach presented in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.