Abstract

PurposeThe purpose of this paper is to introduce an efficient model for analysis of the voltage distribution along the long ceramic insulator strings in a high‐voltage tower window, especially when the structure and parameters of the ceramic insulator are unknown. The effect of the grading ring on the voltage distribution is also investigated.Design/methodology/approachA circuit model composed of capacitors is used to analyze the voltage distribution along the ceramic insulator strings in a transmission tower window. The capacitances of the disk insulators, line conductors, and tower are obtained by using the finite element method, charge simulation method, boundary element method, and measurement according to their characteristics.FindingsThe model is very efficient. The voltage distribution along insulator strings can be optimized by adjusting the parameters of the grading ring. The maximum amount of voltage applied to a single insulator disk can be reduced effectively by increasing either the diameter of the grading ring or the distance from the upper surface of the grading ring to the high‐voltage end of the insulator string.Originality/valueThe model is very efficient for analysis of the voltage distribution along the long ceramic insulator strings, especially when the structure and parameters of the ceramic insulator are unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.