Abstract
Although the human malignant astrocytoma cell line U87-MG has been used in numerous studies, few findings are available on the properties of its membrane ion conductances. Characterization of the ion channels expressed in these cells will make it possible to study membrane ion conductance changes when a receptor is activated by its ligand. This will help to elucidate the functional properties of these receptors and their signal-transduction pathways in pathophysiological events. This work studied the voltage-dependent ionic conductances of U87-MG cells using the Whole-Cell Recording patch-clamp technique. Six types of voltage-dependent ionic currents were identified: (i) a TEA-, 4-AP- and CTX-sensitive Ca2+-dependent K+ current, (ii) a transient K+ current inhibited by 4-AP, (iii) an inwardly rectifying K+ current blocked by Ba2+ and 4-AP, (iv) a DIDS- and SITS-sensitive Cl- current, (v) a TTX-sensitive Na+ conductance and (vi) a L-type Ca2+ conductance activated by BayK-8644 and inhibited by Ni and the L-type Ca2+ channel inhibitor, nifedipine. In addition, electrical depolarizations elicited inward currents due to voltage-independent, Ca2+-dependent K+ influx against the electrochemical gradient, probably via an ouabain-sensitive Na+-K+ pump.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.