Abstract

The effect of the beta-adrenoceptor agonist, isoproterenol, on cytosolic calcium concentration ([Ca2+]i) was studied with the Ca2+-sensitive fluorescent indicator quin 2 in enzymatically dissociated rat ventricular myocytes. Under conditions in which cells have normal polarized resting membrane potential, isoproterenol (1 microM) produced a decrease in [Ca2+]i. In contrast, in the depolarized cells (by raising extracellular K+ concentration to 50 mM), isoproterenol (1 microM) caused an increase in [Ca2+]i. This isoproterenol-induced increase in [Ca2+]i in depolarized cells could be reversed by prior exposure of the cells to the Ca2+ channel blocker, verapamil (5 microM). The results indicate that isoproterenol can either decrease or increase [Ca2+]i depending on membrane potential. The actual effect of isoproterenol on [Ca2+]i at any given membrane potential probably reflects the relative contributions of isoproterenol-induced stimulation of Ca2+ buffering or effluxing activities (which favor a decrease in [Ca2+]i) and enhancement of Ca2+ influx through voltage-sensitive Ca2+ channels (which favors an increase in [Ca2+]i).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.