Abstract

The effect of tetraethylammonium (TEA) on the currents evoked in neurons of the rat superior cervical ganglion by iontophoretic application of acetylcholine (ACh) was studied using a whole-cell patch-clamp recording technique. Tetraethylammonium was used at a concentration of about 20 µM, providing no blocking effect on the ACh-induced membrane currents at a range of positive membrane potentials and reducing these currents recorded at a range of negative membrane potentials by about half. The blocking effect of TEA increased with hyperpolarization within the −50 to −90 mV membrane potential range, and did not depend on the membrane potential level within a range of 0 to −50 mV. The analysis of dose dependence showed that both the voltage-dependent and the voltage-independent blocking effects are due to TEA competitive action on the ganglionic nicotinic acetylcholine receptors (nAChR). The results suggest that the TEA-induced competitive blockade is voltage-dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call