Abstract

We studied in detail the voltage dependence of two-step photocurrent generation through a two-step process of absorbing sub-band gap photons of different photon energies in a GaAs/AlGaAs quantum dot Intermediate Band Solar Cell. Our experiments revealed that two-step photocurrent generation is largely dependent on voltage, and exhibits a maximum at −0.3V. A notable feature is a monotonic decrease in two-step photocurrent in the forward bias region, where the operating point of the solar cell lies. Using a model of rate equations, we extracted the voltage dependence of the individual escape and recombination rates, and found that the decrease in two-step photocurrent in the forward bias region is related to a monotonic increase in recombination rate in the quantum dots with increasing bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call