Abstract

Thick ascending limbs of Henle's loop were dissected from rabbit kidneys and perfused in vitro. Unidirectional transepithelial calcium fluxes from lumen-to-bath and bath-to-lumen were measured with 45Ca using different solutions that caused the transepithelial voltage to vary over a wide range. With lumen-positive voltages there was net calcium absorption from lumen to bath which varied directly with the voltage. With voltage near zero there was no measurable net flux. When the voltage was made negative, the direction of net calcium transport reversed (i.e., secretion from bath to lumen). The presence or absence of bicarbonate in the lumen did not affect the calcium fluxes. Calcium permeability, calculated from the dependence of net flux on voltage, was 7.7 x 10(-6) cm/s, which is approximately 25% of the sodium permeability previously determined in this segment. Analysis of the calcium flux ratios revealed interdependence of the bidirectional fluxes consistent with single-file diffusion but no evidence for active calcium transport. We conclude that there is an important component of passive net calcium transport driven by the voltage in this segment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call