Abstract

This paper proposes a coordination paradigm for properly coordinating local control actions, taken by many communicating control agents (CAs), in order to maintain multi-area power system voltages within acceptable bounds. The proposed control scheme is inspired by distributed model predictive control (DMPC), and relies on the communication of planned local control actions among neighboring CAs, each possibly operated by an independent transmission system operator (TSO). Each CA, knowing a local model of its own area, as well as reduced-order QSS models of its immediate neighboring areas, and assuming a simpler equivalent PV models for its remote neighbors, performs a greedy local optimization over a finite window in time, communicating its planned control input sequence to its immediate neighbors only. The good performance of the proposed real-time model-based feedback coordinating controller, following major disturbances, is illustrated using time-domain simulation of the well-known realistic Nordic32 test system, assuming worst-case conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.