Abstract

Heterogeneous electron transfer (ET) of the redox protein, wild-type azurin (wt-Az) from Pseudomonas aeruginosa, was monitored at the single-molecule (SM) level by fluorescence resonance energy transfer (FRET), one electron at a time. Azurin molecules were labeled with an organic fluorophore (Cy5), and the FRET-coupling between Cy5 and the redox center (copper) was used to study ET to a semi-transparent, 10nm thin gold electrode in an optical configuration. By using a confocal microscope and a bipotentiostat for control of the electrode potential, the oxidation and reduction processes of individual Az–Cy5 molecules were monitored. In the oxidized state of the redox center of the azurin molecule, the fluorescence emission of the covalently attached Cy5 was largely quenched by FRET (‘off’-state), whereas the emission was recovered upon reduction (‘on’-state). The work presented here, shows directly controlled single redox switching events of an individual redox protein and its thermodynamic dispersion. We show that the distribution of midpoint potentials (E0) of individual azurin molecules peaks at 45.7±0.5mV with a full width at half maximum of 15mV vs saturated calomel electrode (SCE).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.