Abstract

Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction-based magnetoelectric (ME) coupling effect. In this paper, electric field control of the two-magnon scattering (TMS) effect has been demonstrated in Ni0.5Zn0.5Fe2O4/Pb(Mn2/3Nb1/3)-PbTiO3 (001) multiferroic heterostructure. The TMS effect is an extrinsic magnetic damping mechanism that scatters the uniform spin motions excited by ferromagnetic resonance (FMR) into degenerate states of spin waves, offering a framework for voltage control of spin dynamics and further increase the ME effect. The angular dependence FMR measurement has been performed by the electron paramagnetic resonance spectrometer. A large electric field modulation of FMR field (−347 Oe) and FMR linewidth (275 Oe) is achieved at the TMS angle of $\theta _{H} = 60 {^{\circ }}$ . Particularly, the TMS effect contribute to ME coupling at the critical TMS angle is about 194% in magnitude compared with that of the strain effect-mediated ME coupling. The TMS intensity is increased by 14.5% under electric field at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.