Abstract

Low-voltage distribution grids experience a rising penetration of inverter-based, distributed generation. In order to not only contribute to but also solve voltage problems, these inverters are increasingly asked to participate in intelligent grid controls. Communicating inverters implement distributed voltage droop controls. The impact of cyber-attacks to the stability of such distributed grid controls is poorly researched and therefore addressed in this article. We characterize the potential impact of several attack scenarios by employing the positivity and diagonal dominance properties. In particular, we discuss measurement falsification scenarios where the attacker corrupts voltage measurement data received by the voltage droop controllers. Analytical, control-theoretic methods for assessing the impact on system stability and voltage magnitude are presented and validated via simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.