Abstract

Gene electrotransfer is a promising nonviral method for transferring genes into the cells. The method is based on electroporation and it has been proven to be successful in both in vivo and in vitro conditions. This phenomenon occurs when cells are exposed to electric field established by high and low voltage pulses. The first high voltage pulse results in a high level of cell permeabilization (permeabilization pulse), while the second low voltage pulse provides a driving force for transport of DNA into cells (electrophoretic pulse). The efficiency and successfulness of gene electrotransfer significantly depends on electrical devices in use. A voltage commutator presents one of the most important electrical components in bipolar or multi electrodes devices. Its main function is commutating high and low voltage pulses, which are delivered through the microelectrodes to the skin cells. Even though gene electrotransfer is based on electroporation, our previous voltage commutator for electroporation is appropriate for gene electrotransfer because of its slow switching between voltage pulses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call