Abstract

Unalleviated voltage instability frequently results in voltage collapse; which is a cause of concern in power system networks across the globe but particularly in developing countries. This study proposed an online voltage collapse prediction model through the application of a machine learning technique and a voltage stability index called the new line stability index (NLSI_1). The approach proposed is based on a multilayer feed-forward neural network whose inputs are the variables of the NLSI_1. The efficacy of the method was validated using the testing on the IEEE 14-bus system and the Nigeria 330-kV, 28-bus National Grid (NNG). The results of the simulations indicate that the proposed approach accurately predicted the voltage stability index with an R-value of 0.9975 with a mean square error (MSE) of 2.182415x10<sup>−5</sup> for the IEEE 14-bus system and an R-value of 0.9989 with an MSE of 1.2527x10<sup>−7</sup> for the NNG 28 bus system. The results presented in this paper agree with those found in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.