Abstract

To achieve the environmental goals set by many governments, an increasing amount of renewable energy, often delivered by distributed-generation (DG) units, is injected into the electrical power system. Despite the many advantages of DG, this can lead to voltage problems, especially in times of a high local generation and a low local load. The traditional solution is to invest in more and stronger lines, which could lead to massive investments to cope with the huge rise of DG connection. Another common solution is to include hard curtailment; thus, on-off control of DG units. However, hard curtailment potentially leads to on-off oscillations of DG and a high loss of the available renewable energy as storage is often not economically viable. To cope with these issues, applying a grid-forming control in grid-connected DG units is studied in this paper. The voltage-based droop control that was originally developed for power sharing in islanded microgrids, enables an effective way for soft curtailment without communication. The power changes of the renewable energy sources are delayed to more extreme voltages compared to those of the dispatchable units. This restricts the renewable energy loss and avoids on-off oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.