Abstract
Superconductors have a potential application in future turboelectric distributed propulsion (TeDP) aircraft and present significant new challenges for protection system design. Electrical faults and cooling system failures can lead to temperature rises within a superconducting distribution network, which necessitates a reduction or temporary curtailment of current to loads to prevent thermal runaway occurring within the cables. This scenario is undesirable in TeDP aircraft applications where the loads may be flight-critical propulsion motors. This article proposes a power management and control method that exploits the fast-acting measurement and response capabilities of the power electronic interfaces within the distribution network to maximize current supply to critical loads, reducing the impact of a temperature rise event in the superconducting distribution network. This new algorithm uses the detection of a resistive voltage in combination with a model-based controller that estimates the operating temperature of the affected superconducting cable to adapt the output current limit of the associated power electronic converter. To demonstrate the effectiveness of this method and its impact on wider system stability, the algorithm is applied to a simulated voltage-source converter supplied aircraft dc superconducting distribution network with representative propulsion motor loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Transportation Electrification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.