Abstract

This paper presents a novel voltage-based adaptive impedance force control for a lower limb rehabilitation robot. The impedance parameters are adaptively regulated by a gradient descent algorithm for adjusting the human force in performing therapeutic exercises. Although the proposed control is based on voltage control strategy, it differs from the common torque control strategy. One of the advantages is that it is free from the dynamical models of the robot and patient. Compared with a torque control scheme, it is simpler, less computational, and more efficient while it considers the actuators. The control approach is verified by stability analysis. Simulation results show the efficiency of the control approach applied on a lower limb rehabilitation robot driven by an electric motor. A comparison on performing isometric exercise shows that the voltage-based adaptive impedance force control is superior to both voltage-based impedance control and torque-based impedance control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.