Abstract

The solid-state transformer (SST) is an interface device between ac distribution grids and dc distribution systems. The SST consists of a cascaded multilevel ac/dc rectifier stage, a dual active bridge (DAB) converter stage with high-frequency transformers to provide a regulated 400-V dc distribution, and an optional dc/ac stage that can be connected to the 400-V dc bus to provide residential 120/240 V <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$_{\rm ac}$</tex></formula> . However, due to dc-link voltage and power unbalance in the cascaded modules, the unbalanced dc-link voltages and power increase the stress of the semiconductor devices and cause overvoltage or overcurrent issues. This paper proposes a new voltage and power balance control for the cascaded H-Bridge converter-based SST. Based on the single-phase dq model, a novel voltage and the power control strategy is proposed to balance the rectifier capacitor voltages and the real power through parallel DAB modules. Furthermore, the intrinsic power constraints of the cascaded H-Bridge voltage balance control are derived and analyzed. With the proposed control methods, the dc-link voltage and the real power through each module can be balanced. The SST switching model simulation and the prototype experiments are presented to verify the performance of the proposed voltage and power balance controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.