Abstract

This paper proposes an optimal power control strategy for inverter-based Distributed Generation (DG) units in autonomous microgrids. It consists of power, voltage, and current controllers with Proportional-Integral (PI) regulators. The droop concept is used for the power control strategy. Static parameters in PI regulators may not ensure the most optimal solution due to inevitable changes happening in microgrid configuration and loads. In the proposed method, after occurring a load change in a standalone microgrid, parameters of the PI controller are dynamically adjusted to get the most optimal operating point that satisfies objective functions. The optimization problem is formulated as a multi-objective programming with objective functions of minimizing overshoot/undershoot, settling time, rise time, and Integral Time Absolute Error (ITAE) in the output voltage. These objective functions are combined using fuzzy memberships. The Hybrid Big Bang-Big Crunch algorithm (HBB-BC) is used to solve the optimization problem. The proposed methodology is simulated on a case study and according to obtained results, the suggested tuning of PI parameters leads to a better voltage response than previous methods. The case study is also solved using the Particle Swarm Optimization (PSO) and Big Bang-Big Crunch (BB-BC) algorithms and it is found that the HBB-BC gives a better solution than the PSO and BB-BC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.