Abstract

This paper describes a derivation of the dynamic impedance of a dye-sensitized solar cell (DSSC) and its characterization using a frequency response analyzer (FRA). The dynamic impedance equation as a function of voltage and frequency is presented. Testing is done on a DSSC, fabricated from a fluorine-doped SnO2 (FTO) conducting glass, ruthenium (II) dye (N719) sensitized TiO2 nanoparticles, an iodide-triiodide electrolyte, and a Pt counter electrode. At each bias voltage, impedance locus is plotted in a complex plane. Intercepts of each semicircular impedance loci yield series, dynamic, and shunt resistance of the cell. Experimental results could be used to analyze characteristics of AC equivalent circuit components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.