Abstract

The neuroendocrine Type 1 Dahlgren cells of the caudal neurosecretory system of the flounder display characteristic bursting activity, which may increase secretion efficiency. The firing activity pattern in these cells was voltage-dependent; when progressively depolarized, cells moved from silent (approximately -70 mV), through bursting and phasic to tonic firing (< -65 mV). Brief (10 s) evoked bursts of spikes were followed by a slow after-depolarization (ADP; amplitude up to 10 mV, duration 10-200 s), which was also voltage-dependent and could trigger a prolonged burst. The ADP was significantly reduced in the absence of external Ca(2+) ions or the presence of the L-type Ca(2+) channel blocker, nifedipine. BayK 8644 (which increases L-type channel open times) significantly increased ADP duration, whereas the Ca(2+)-activated nonselective cation channel blocker, flufenamic acid, had no effect. Pharmacological blockade of Ca(2+)-activated K(+) channels, using apamin and charybdotoxin, increased the duration of both ADP and evoked bursts. However, action potential waveform was unaffected by either apamin/charybdotoxin, nifedipine, BayK 8644 or removal of external Ca(2+). The short duration (approximately 100 ms), hyperpolarization-activated, postspike depolarizing afterpotentials (DAP), were significantly reduced by nifedipine. We propose that long duration ADPs underlie bursts and that short duration DAPs play a role in modulation of spike frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call