Abstract

We studied the properties of voltage-activated outward currents in two types of spider cuticular mechanoreceptor neurons to learn if these currents contribute to the differences in their adaptation properties. Both types of neurons adapt rapidly to sustained stimuli, but type A neurons usually only fire one or two action potentials, whereas type B neurons can fire bursts lasting several hundred milliseconds. We found that both neurons had two outward current components, 1) a transient current that activated rapidly when stimulated from resting potential and inactivated with maintained stimuli and 2) a noninactivating outward current. The transient outward current could be blocked by 5 mM tetraethylammonium chloride, 5 mM 4-aminopyridine, or 100 microM quinidine, but these blockers also reduced the amplitude of the noninactivating outward current. Charybdotoxin or apamin did not have any effect on the outward currents, indicating that Ca2+-activated K+ currents were not present or not inhibited by these toxins. The only significant differences between type A and type B neurons were found in the half-maximal activation (V50) values of both currents. The transient current had a V50 value of 9. 6 mV in type A neurons and -13.1 mV in type B neurons, whereas the V50 values of noninactivating outward currents were -48.9 mV for type A neurons and -56.7 mV for type B neurons. We conclude that, although differences in the activation kinetics of the voltage-activated K+ currents could contribute to the difference in the adaptation behavior of type A and type B neurons, they are not major factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call