Abstract

Previous investigations on voltage-activated adhesives were restricted to aqueous solvents, where current-directed cross-linking competed with water electrolysis. Replacing aqueous would expand applications of electrocuring technology and avoid excessive foaming, but many organic solvents have high ohmic resistances that prevent electrical conduction. These impediments were overcome through internal grafting of ferrocene (Fc) and diazirine (Dz) donor–acceptor pairs on fifth-generation polyamidoamine (G5-PAMAM) dendrimers, forming G5-Fc-Dz cografted conjugates, where Fc internal additives provided an instantaneous conductive hole (+) network toward the redox conversion of diazirine to carbene insertion adhesion in nontoxic organic solvents of DMSO, DMF, and PEG400. Size exclusion chromatography, 1H NMR, and 19F NMR evaluated the formulations before and after electrocuring to quantitate grafting ratios and cross-linked dendrimers. Cyclic voltammetry confirmed the retained redox behavior of grafted Fc and Dz...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call