Abstract

Patients diagnosed with Parkinson’s disease (PD) have difficulty initiating and executing movements due to an acquired imbalance of the basal ganglia thalamocortical circuit secondary to loss of dopaminergic input into the striatum. The unbalanced circuit is hyper-synchronized, presenting as larger and longer bursts of beta-band (13–30 Hz) oscillations in the subthalamic nucleus (STN). As a first step toward a novel PD therapy that aims to improve symptoms through beta desynchronization, we sought to determine if individuals with PD could acquire volitional control of STN beta power in a neurofeedback task. We found a significant difference in STN beta power between task conditions, and relevant brain signal features could be detected and decoded in real time. This demonstration of volitional control of STN beta motivates development of a neurofeedback therapy to modulate PD symptom severity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.