Abstract

Seven piston cores, 7–16 m long, taken between the Kuril Islands and Emperor Seamounts, have been dated using radiolarian and diatom extinction levels and correlated using volcanic ash layers. The average rate of deposition in the cores decreases from 6 cm/1000 years near the Kuril Trench to about 3.5 cm/1000 years near the seamounts. Dispersed volcanic ash is the main constituent of the cores and it comprises up to 80% of the sediments. The percentage of the ash in the sediments decreases eastward from the Kuril Islands as the rates of deposition decrease. The total thickness of the sediments in the same latitudinal belt also decreases eastward. The thickness of the sediment inferred from seismic data near the Kuril trench is about 600 m and rates of deposition are approximately 6 cm/1000 years in the Pleistocene cores. Sediment thickness near the seamounts is about 300 m, and rates of deposition are approximately 3 cm/1000 years in the Pleistocene cores. Extrapolated rates of deposition in these cores suggest that the age of the base of the sediment to the east of the Kurils is only about 10 m.y. The anomalously young age for the base of the sediments obtained by extrapolation of an assumed constant rate of deposition can be explained by Deep Sea Drilling Project data from the northwest Pacific. The sediment thickness at DSDP site 192 east of Kamchatka includes sediments from all the Cenozoic epochs except the Paleocene. Rates of deposition of sediment younger than Middle Miocene are an order of magnitude higher than those prior to this time. At DSDP sites east of Japan, either Late Miocene sediments lie directly on the basement, or sediments older than Late Miocene are very thin. Post-Middle Miocene sediments are composed primarily of glass shards. Thus, about 90% of the total thickness of sediments in the northwest Pacific is composed of sediments younger than Middle Miocene with volcanic ash as the main constituent. The volcanic ash results from the present phase of explosive volcanic activity which began in the Late Miocene in the northwest Pacific volcanic arcs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call