Abstract

Exploding volcanoes, which produce intense infrasound, are reminiscent of the veritable explosion of volcano infrasound papers published during the last decade. Volcano infrasound is effective for tracking and quantifying eruptive phenomena because it corresponds to activity occurring near and around the volcanic vent, as opposed to seismic signals, which are generated by both surface and internal volcanic processes. As with seismology, infrasound can be recorded remotely, during inclement weather, or in the dark to provide a continuous record of a volcano's unrest. Moreover, it can also be exploited at regional or global distances, where seismic monitoring has limited efficacy. This paper provides a literature overview of the current state of the field and summarizes applications of infrasound as a tool for better understanding volcanic activity. Many infrasound studies have focused on integration with other geophysical data, including seismic, thermal, electromagnetic radiation, and gas spectroscopy and they have generally improved our understanding of eruption dynamics. Other work has incorporated infrasound into volcano surveillance to enhance capabilities for monitoring hazardous volcanoes and reducing risk. This paper aims to provide an overview of volcano airwave studies (from analog microbarometer to modern pressure transducer) and summarizes how infrasound is currently used to infer eruption dynamics. It also outlines the relative merits of local and regional infrasound surveillance, highlights differences between array and network sensor topologies, and concludes with mention of sensor technologies appropriate for volcano infrasound study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call