Abstract

Volcano hazards and potential risks on St. Paul Island, Alaska, are assessed on the basis of the recent volcanic history of the island. The long-term frequency of volcanic eruptions is estimated using a count of 40 identifiable vents considered to represent separate eruptions. Assuming regular temporal spacing of these events during the period 360,000 to 3230 y.b.p., the estimated mean recurrence time is 0.11 × 10 − 3 eruption/year and the eruptive interval is approximately 8900 years. Volcano hazards on St. Paul are associated exclusively with the eruption of low viscosity alkali basaltic magma. The most important are lava flows, tephra fallout, and base surges. Other hazards include volcanic gases, seismicity and ground deformation associated with dike intrusion beneath rift zones, and explosive lava–water interactions along coastal regions and water-saturated ground. The general characteristics of past volcanism on St. Paul indicate that the most likely styles of future eruptions will be (1) Hawaiian-style eruptions with fire fountains and pahoehoe lava flows issuing from one of two polygenetic shield volcanoes on the island; (2) Strombolian-style, scoria cone-building eruptions with associated tephra fallout and eruption of short pahoehoe lava flows; and (3) explosive Surtseyan-style, phreatomagmatic eruptions initiating at some point along St. Paul's insular shelf. Given the relatively restricted range in volcanic phenomena on St. Paul, the most significant question regarding volcano hazard and risk assessment is whether future eruptions will be confined to the same region on the island as the most recent activity. If future activity follows the recent past, resulting volcano hazards will most likely be located at inland areas sufficiently far from habitation that they will pose little threat to life or property. An important caveat, however, is that St. Paul is constructed almost entirely from the products of volcanic eruptions with vents located all over the island. Thus, a new vent could form at any place on the island, including St. Paul's insular shelf and areas farther offshore. Because of the remote location of St. Paul in the storm-lashed Bering Sea, risks related to volcano hazards may be greater than they would be in a different setting where more stable meteorological conditions prevail and access by monitoring and relief groups is less challenging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call