Abstract

AbstractA transient lunar atmosphere formed during a peak period of volcanic outgassing and lasting up to about ~70 Ma was recently proposed. We utilize forward‐modeling of individual lunar basaltic eruptions and the observed geologic record to predict eruption frequency, magma volumes, and rates of volcanic volatile release. Typical lunar mare basalt eruptions have volumes of ~102–103 km3, last less than a year, and have a rapidly decreasing volatile release rate. The total volume of lunar mare basalts erupted is small, and the repose period between individual eruptions is predicted to range from 20,000 to 60,000 years. Only under very exceptional circumstances could sufficient volatiles be released in a single eruption to create a transient atmosphere with a pressure as large as ~0.5 Pa. The frequency of eruptions was likely too low to sustain any such atmosphere for more than a few thousand years. Transient, volcanically induced atmospheres were probably inefficient sources for volatile delivery to permanently shadowed lunar polar regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.