Abstract

ABSTRACTThe northern Colorado River extensional corridor (NCREC, USA) provides an excellent record of coeval volcanic and mid- to upper-crustal (<13 km) plutonic suites. The NCREC is a 50–100-km-wide zone that records late Tertiary lithospheric extension, volcanism, continental sedimentation and plutonism. Compilation of published studies of NCREC magmatic rocks permits an assessment of volcanic–plutonic links, magma sources and magmatic processes. The volcanic sections provide an excellent record of magma compositions (basalt, trachyandesite, trachyte and rhyolite) which span a 9-million-year period in the Miocene age (20–11 Ma).Contemporaneous Miocene plutons span a similar compositional range (gabbro, diorite, quartz monzonite and granite) and were emplaced during a 4·5-million-year interval from 17 to 12·5 Ma. Geochemical and isotopic compositions and compositional trends allow direct correlation between plutonic and volcanic suites across the entire compositional range. Petrogenetic models demonstrate that intermediate magmas formed by a combination of magma mixing and fractional crystallisation involving mantle-derived mafic with crustal-derived felsic end-member magmas. Plutons exhibit a variety of features which suggest magma chamber processes, including (1) mafic cumulate sequences, (2) felsic cumulate sequences, and (3) magma mingling and advanced stages of magma mixing. Thus, the NCREC plutonic-volcanic record provides a link between magmatic processes recorded in pluton magma chambers and magmatic products in the form of extrusive igneous rocks. The NCREC plutons represent upper crustal magma chambers which connected volcanic eruptive centres to deeper-level magma chambers, and ultimately, to zones of mantle and crustal mel

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call