Abstract

At the beginning of the twentieth century, volcanology began to emerge as a modern science as a result of increased interest in eruptive phenomena following some of the worst volcanic disasters in recorded history: Krakatau (Indonesia) in 1883 and Mont Pelée (Martinique), Soufrière (St. Vincent), and Santa María (Guatemala) in 1902. Volcanology is again experiencing a period of heightened public awareness and scientific growth in the 1980s, the worst period since 1902 in terms of volcanic disasters and crises. A review of hazards mitigation approaches and techniques indicates that significant advances have been made in hazards assessment, volcano monitoring, and eruption forecasting. For example, the remarkable accuracy of the predictions of dome‐building events at Mount St. Helens since June 1980 is unprecedented. Yet a predictive capability for more voluminous and explosive eruptions still has not been achieved. Studies of magma‐induced seismicity and ground deformation continue to provide the most systematic and reliable data for early detection of precursors to eruptions and shallow intrusions. In addition, some other geophysical monitoring techniques and geochemical methods have been refined and are being more widely applied and tested. Comparison of the four major volcanic disasters of the 1980s (Mount St. Helens, U.S.A. (1980), El Chichón, Mexico (1982); Galunggung, Indonesia (1982); and Nevado del Ruíz, Colombia (1985) illustrates the importance of predisaster geoscience studies, volcanic hazards assessments, volcano monitoring, contingency planning, and effective communications between scientists and authorities. The death toll (>22,000) from the Ruíz catastrophe probably could have been greatly reduced; the reasons for the tragically ineffective implementation of evacuation measures are still unclear and puzzling in view of the fact that sufficient warnings were given. The most pressing problem in the mitigation of volcanic and associated hazards on a global scale is that most of the world's dangerous volcanoes are in densely populated countries that lack the economic and scientific resources or the political will to adequately study and monitor them. This problem afflicts both developed and developing countries, but it is especially acute for the latter. The greatest advances in volcanic hazards mitigation in the near future are most likely to be achieved by wider application of existing technology to poorly understood and studied volcanoes, rather than by refinements or new discoveries in technology alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call