Abstract

AbstractVolcanic flood basalt eruptions have been linked to or are contemporaneous with major climate disruptions, ocean anoxic events, and mass extinctions throughout at least the last 400 M years of Earth's history. Previous studies and recent history have shown that volcanically‐driven climate cooling can occur through reflection of sunlight by H2SO4 aerosols, while longer‐term climate warming can occur via CO2 emissions. We use the Goddard Earth Observing System Chemistry‐Climate Model to simulate a 4‐year duration volcanic SO2 emission of the scale of the Wapshilla Ridge member of the Columbia River Basalt eruption. Brief cooling from H2SO4 aerosols is outweighed by dynamically and radiatively driven warming of the climate through a three orders of magnitude increase in stratospheric H2O vapor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.