Abstract
Abstract We study the probabilistic properties of the fractional Ornstein–Uhlenbeck process, which is a relevant framework for volatility modeling in continuous time. First, we compute an expression for its variance for any value of the Hurst parameter, H ∈ (0, 1). Second, we derive the density of the process and we calculate the probability of its supremum to be above a given threshold. We provide a number of illustrations based on fractional stochastic volatility models, such as those of Comte and Renault (1998), Bayer et al. (2016) and Gatheral et al. (2018). Finally, the empirical analysis, based on the realized variance series of S&P500, shows the usefulness of these theoretical results for risk management purposes, especially when a characterization of the volatility tail risk is needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.