Abstract
Many models have been developed to model, estimate and forecast financial time series volatility, amongst which are the most popular autoregressive conditional heteroscedasticity (ARCH) model introduced by Engle (1982) and generalized autoregressive conditional heteroscedasticity (GARCH) model introduced by Bollerslev (1986). The aim of this paper is to determine which type of ARCH/GARCH models can fit the best following cryptocurrencies: Ethereum, Neo, Ripple, Litecoin, Dash, Zcash and Dogecoin. It is found that the EGARCH model is the best fitted model for Ethereum, Zcash and Neo, PARCH model is the best fitted model for Ripple, while for Litecoin, Dash and Dogecoin it depends on the selected distribution and information criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.