Abstract

Stochastic volatility models describe stock returns [Formula: see text] as driven by an unobserved process capturing the random dynamics of volatility [Formula: see text]. The present paper quantifies how much information about volatility [Formula: see text] and future stock returns can be inferred from past returns in stochastic volatility models in terms of Shannon’s mutual information. In particular, we show that across a wide class of stochastic volatility models, including a two-factor model, returns observed on the scale of seconds would be needed to obtain reliable volatility estimates. In addition, we prove that volatility forecasts beyond several weeks are essentially impossible for fundamental information theoretic reasons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.