Abstract

AbstractIn this paper, we propose a stochastic conditional range model with leverage effect (henceforth SCRL) for volatility forecasting. A maximum likelihood method based on the particle filters is developed to estimate the parameters of the SCRL model. Simulation results show that the proposed methodology performs well. We apply the proposed model and methodology to four stock market indices, the Shanghai Stock Exchange Composite Index of China, the Hang Seng Index of Hong Kong, the Nikkei 225 Index of Japan, and the S&P 500 Index of US. Empirical results highlight the value of incorporating leverage effect into range modeling and forecasting. In particular, the results show that our SCRL model outperforms the conditional autoregressive range model, the conditional autoregressive range model with leverage effect, and the stochastic conditional range model in both in‐sample fit and out‐of‐sample forecast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.