Abstract

Due to lack of information, volatility cannot be estimated via a high-frequency approach when markets are non-trading. In this paper, we focus on volatility forecasting for the Tokyo Stock Exchange (TSE) using high-frequency data of related assets traded in international markets when TSE is closed. We use the heterogenous autoregressive model to identify an optimal approach of this additional information for the ten largest TSE-listed stocks, TOPIX and Nikkei 225. The usefulness of harnessing global and neighbour market information in forecasting the TSE market volatility is confirmed through in-depth empirical analysis. Our findings have important implications for investors and policy makers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.