Abstract

Financial returns are frequently nonstationary due to the nonstationary distribution of zeros. In daily stock returns, for example, the nonstationarity can be due to an upwards trend in liquidity over time, which may lead to a downwards trend in the zero-probability. In intraday returns, the zero-probability may be periodic: It is lower in periods where the opening hours of the main financial centers overlap, and higher otherwise. A nonstationary zero-process invalidates standard estimators of volatility models, since they rely on the assumption that returns are strictly stationary. We propose a GARCH model that accommodates a nonstationary zero-process, derive a zero-adjusted QMLE for the parameters of the model, and prove its consistency and asymptotic normality under mild assumptions. The volatility specification in our model can contain higher order ARCH and GARCH terms, and past zero-indicators as covariates. Simulations verify the asymptotic properties in finite samples, and show that the standard estimator is biased. An empirical study of daily and intradaily returns illustrate our results. They show how a nonstationary zero-process induces time-varying parameters in the conditional variance representation, and that the distribution of zero returns can have a strong impact on volatility predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.