Abstract

ISOTOPE ratios and concentrations of incompatible trace elements are remarkably successful in discriminating the tectonic origin and magmatic source components for basalts1–5. But problems remain with discriminating the tectonic origin of some tholeiites, especially where field relations and other geological evidence are ambiguous. For example, the tectonic origin of basalts from the Troodos ophiolite (Cyprus) has been debated for several decades. Most workers have been unable to distinguish between an island-arc and/or back-arc origin for the ophiolite6–8. Here we use volatile, K2O and TiO2 contents from ∼250 fresh submarine volcanic glasses to discriminate between tholeiites from different tectonic regimes. K2O÷H2O ratios are lower (<0.70) in spread ing-centre glasses than in those from island arcs and intraplate oceanic islands. Back-arc-basin basalts can generally be separated from mid-ocean-ridge basalts by their high H2O contents. Using this information, we show that some fresh glasses from the Troodos ophiolite have a clear back-arc-basin affinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call