Abstract

The structure and thermal properties of a novel zirconium(IV) complex with a methoxy substituted β-diketonate ligand tetrakis-(2-methoxy-2,6,6-trimethylheptane-3,5-dionato)zirconium are described. The complex sublimes without decomposition under low pressure (10–2 Torr) at 200 °C. The crystal structure of the complex is molecular and is composed of two structural Zr(zis)4 isomers in a 1:1 ratio. The crystallographic data are as follows: C88H152F24O24Zr2, P-1, a = 12.1350(7) A, b = 19.7733(10) A, c = 21.0526(12) A, α = 83.338(2)°, β = 89.571(2)°, γ = 73.515(2)°, V = 4809.5(5) A3, Z = 2, d = 1.227 g/cm3. The coordination environment of the zirconium atom consists of eight oxygen atoms from four β-diketonate ligands; the coordination polyhedron is a square antiprism. The Zr–O distances are in a range 2.127-2.202 A. The thermal properties of the complex are studied by TG–DTA. The effect of the crystal structure (molecular packing) on the volatility and thermal properties is compared for the new complex and two other analogous zirconium complexes with β-diketonate ligands containing bulky terminal substituents. The results of the mass spectrometric study of thermal behavior of the complexes on programmed heating of vapor under the conditions similar to those in a hot wall CVD reactor under low pressure, including the decomposition in the presence of oxygen, are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call