Abstract

An in vivo solid-phase microextraction (SPME) fiber with high-coverage capture capacity of plant endogenous substances based on the porous covalent triazine framework (CTF) material was developed. The CTF fiber coupled with gas chromatographic quadrupole time-of-flight mass spectrometer (GC-QTOF-MS) analysis was used for monitoring untargeted endogenous metabolites in living Chinese cabbage plants (Brassica campestris L. ssp. chinensis Makino (var. communis Tsen et Lee)). A total of 100 endogenous substances were identified, mainly including aldehydes, ketones, acids, alcohols, phenols, alkanes, alkenes, esters, isorhodanates, nitriles, as well as indole and its derivatives. Using the in vivo metabolites analysis method, Chinese cabbage plants at different growing stages demonstrated significantly statistical differences in plant metabolism. In addition, metabolic dysregulation of Chinese cabbage plants under fipronil pesticide contamination was observed. To summarize, the proposed approach provides a feasible method to capture metabolic information in living vegetables and for risk assessment of pesticide use during agricultural production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call