Abstract

Arabidopsis thaliana from the Brassicaceae family has arisen as the model organism in plant biology research. The plant’s genome has been characterized and worldwide studies are conducted at the genetic, protein and metabolic level to unravell the function of genes involved in growth, reproduction, biosynthesis, and plant communication. As part of the multidisciplinary project BIOEMIT at NTNU, metabolomic studies of Arabidopsis T-DNA knock-out mutants and ecotypes have been carried out. Volatile profiles of autolyzed, intact plants and single plant organs were obtained by solid-phase microextraction coupled with gas chromatography–mass spectrometry. The studies were aimed at the diversity of defense-related compounds from the glucosinolate–myrosinase system – the isothiocyanates and nitriles. Metabolites from methionine, leucine and phenylalanine-derived glucosinolates were most abundant (4-methylthiobutyl, 4-methylpentyl, 2-phenylethyl). In addition, 24 monoterpenes, 26 sesquiterpenes and 12 aromatic structures, predominantly observed in inflorescenses, are described. Excluding the vast group of straight chain aliphatic structures, a total of 102 volatile compounds were detected, of which 59 are reported in Arabidopsis thaliana for the first time, thus emphasizing the sensitivity and applicability of solid-phase microextraction for volatile profiling of plant secondary metabolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.