Abstract

Methanol and acetone were used to study effects of organic matrix on signal intensities of elements from 7Li to 238U and oxide yields in inductively coupled plasma-mass spectrometry (ICP-MS). Enhancement or suppression of analyte signals in the presence of methanol or acetone depends on the volatility and concentration of the compound and mass and ionization potential of elements concerned as well as ICP-MS operating conditions. Presence of a low concentration of methanol or acetone enhances the intensities of elements in order of decreasing mass. This is attributed to the spatial shift of the zone of maximum ion density, which, in turn, affects the extraction of ions from the plasma to the sampling cone. The possible effect of liquid methanol or acetone on nebulization and/or transport efficiency was avoided by using carry-over effect experiment. More volatile acetone more readily suppresses signals of all the elements under investigation. A higher concentration of methanol also suppresses intensities of the elements due to resultant cooling of the plasma. The enhancement effect of methanol and acetone appears to be more related to the amount of carbon present in the plasma than the difference between the functional groups of organic solvents. The oxide yield decreases in the presence of methanol, the magnitude of which depends on the nebulizer gas flow rate used. However, the reduced oxide yield is insufficient to account for the signal enhancement. Our results for 75As and 78Se agree with the C +-species–analyte atom charge transfer reaction hypothesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call