Abstract
A broad cross-section of volatiles emanating from four species of popular indoor ornamental plants (Spathiphyllum wallisii Regel, Sansevieria trifasciata Prain, Ficus benjamina L., and Chrysalidocarpus lutescens Wendl.) was identified and categorized based on source. Volatile organic compounds from individual plants were obtained using a dynamic headspace system and trapped on Tenax TA during the day and again at night. Using short-path thermal desorption and cryofocusing, the volatiles were transferred onto a capillary column and analyzed using gas chromatography–mass spectroscopy. The volatiles originated from the plants, media/micro-organisms, pot, and pesticides. A total of 23, 12, 13, and 16 compounds were identified from S. wallisii, S. trifasciata, F. benjamina, and C. lutescens, respectively. The night emanation rate was substantially reduced (i.e., by 30.1%, 69.5%, 73.7%, and 63.1%, respectively) reflecting in part the regulation of biosynthesis and the greater diffusion resistance when the stomata were closed. S. wallisii had the highest emanation rate, releasing 15 terpenoid compounds [e.g., linaloloxide, linalool, (Z)-β-farnesene, farnesal, (+)-δ-cadinene, (+)-β-costol] into the surrounding air. Alpha-farnesene (90.3%) was quantitatively the dominant volatile present followed by (Z)-β-farnesene (1.4%), (+)-β-costol (1.4%), and farnesal (1.1%). Substantially fewer terpenoids (i.e., two, nine, and eight) emanated from S. trifasciata, F. benjamina, and C. lutescens, which quantitatively emitted fewer volatiles than S. wallisii. Most terpenoids from the four species were sesquiterpenes rather than monoterpenes. Methyl salicylate, a plant-signaling compound, was emitted by all four species. Certain volatiles (e.g., 2-chlorobenzonitrile, 1-ethyl-3,5-dimethylbenzene) were released from growth media and/or micro-organisms therein; other sources included the plastic pot (e.g., 2-ethyl-1-hexanol, octamethyl cyclotetrasiloxane) and pesticide ingredients [e.g., 2-(2-methoxy- ethoxy)ethanol, 2-ethylhexyl salicylate, homosalate].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.