Abstract
Volatile organic compound (VOC) stripping at clarifier weirs was investigated for both clean water and primary wastewater using a pilot-scale model with a cross-sectional geometry similar to clarifier weirs. Drop height, type of flow regime over the weir, and weir shape were identified as important parameters influencing mass transfer. It was also observed that VOC stripping from free-fall flow could be correlated with Henry's law constant. A model that accounts for liquid- and gas-phase mass transfer was developed to predict VOC stripping from clean water. The relatively low and consistent gas- and liquid-phase mass-transfer coefficients used in the model suggest that a representative value may apply for all weir conditions. Incorporating a transition coefficient between clean water and wastewater made it possible to predict VOC transfer in primary wastewater based on clean water data. Experimental results and modeling efforts described in this paper could serve as a first step in estimating VOC emissions for flows over clarifiers at wastewater treatment plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.