Abstract

The catalytic oxidation of volatile organic compounds (VOCs) (ethanol and toluene) alone and in mixture was investigated over Pt, Mn and Pt/Mn impregnated bentonite monoliths. Their properties were characterized by using the Brunauer–Emmett–Teller method, X-ray diffraction, X-ray photoelectron spectra and temperature programmed reduction (TPR). Independently of which catalyst was used, ethanol was more easily oxidized than toluene. In toluene oxidation, the sequence of catalytic activity was as follows: Pt/Mn/B > Pt/B > Mn/B, probably due to some favorable synergetic effects between Pt and Mn and to the presence of Mn3+/Mn4+ species. In ethanol oxidation, Pt/Mn/B and Pt/B present similar activities, and greater than that of Mn/B. In the VOC mixture, toluene slows down the partial oxidation of ethanol towards acetaldehyde. On the contrary, the presence of ethanol has a promoting effect on toluene oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.