Abstract

Industrial productions emit large reactive volatile organic compounds (VOCs) into atmosphere, affecting tropospheric atmospheric chemistry and human health. In this study, VOC samples of industrial process and solvent use were collected from typical industries. The mass concentrations of total VOC (TVOCs) were 34.10 ± 35.46 mg m−3 (mean ± 95% C.I.) measured in industrial process and 25.39 ± 16.88 mg m−3 in solvent use. Difference of VOC profiles between industrial process and solvent use was revealed. Much higher concentrations or percentages of halocarbons were emitted from industrial process, while more abundant alkanes were measured in solvent use. The relative proportions of B:T:E (benzene, toluene and ethylbenzene) were similar for these two industrial sources, but quite different from that of combustion sources. Different ratios of F/A (formaldehyde/acetaldehyde) and A/P (acetaldehyde/propionaldehyde) were found between industrial process and solvent use, suggesting that the ratios might be used as the references to distinguish these two industrial sources. The oxygenated VOCs (OVOCs) were the largest VOC group and ranked No.1 contributor of ozone formation potentials (OFPs) in these two sources. Our results provide the source profiles of industrial VOCs and emphasize the contribution of industrial OVOCs in ozone formations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call