Abstract
Rose is a highly significant ornamental plant with substantial edible and medicinal value, cultivated worldwide primarily for perfume production. Recently, Rosa yangii, a new species found in northwestern Yunnan, China, has drawn attention due to its strong sweet scented flowers. In this study, the floral components of R. yangii were extracted at different flowering stages using solid phase micro extraction (SPME) and analyzed through gas chromatography–mass spectrometry (GC–MS). A total of 131 volatile organic compounds (VOCs) were detected from R. yangii, including 69 odor compounds. The production and release of floral VOCs were the highest during the initial-open stage, making it the most suitable time for harvesting as a significant number of floral components were synthesized and preserved. The analysis of the odor activity values (OAV) highlighted several key aromatic ingredients of R. yangii, such as eugenol, methyleugenol, benzeneacetaldehyde and phenylethylalcohol, heptanal, decanal, (E)-2-hexen-1-yl acetate, caryophyllene, and others. Metabolome and time-order gene co-expression networks (TO-GCN) revealed that VOCs and benzenoids/phenylpropanoids, along with associated genes, played a pivotal role in the overall floral regulatory network of R. yangii. MYB and bHLH were identified as the essential regulatory factors governing the regulation of eugenol synthase (EGS) and isoeugenol synthase (IGS), consequently influencing the sweet scent of R. yangii. The findings of this study provide a scientific foundation for enhancing fragrance through molecular breeding of ornamental plants. Furthermore, the study facilitated the development and utilization of this new plant’s essential oil material in various industries, including food storage, aromatherapy, cosmetic, and perfumery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.